Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Wellcome Open Res ; 5: 88, 2020.
Article in English | MEDLINE | ID: covidwho-2290936

ABSTRACT

Background: International and UK data suggest that Black, Asian and Minority Ethnic (BAME) groups are at increased risk of infection and death from COVID-19. We aimed to explore the risk of death in minority ethnic groups in England using data reported by NHS England. Methods: We used NHS data on patients with a positive COVID-19 test who died in hospitals in England published on 28th April, with deaths by ethnicity available from 1st March 2020 up to 5pm on 21 April 2020. We undertook indirect standardisation of these data (using the whole population of England as the reference) to produce ethnic specific standardised mortality ratios (SMRs) adjusted for age and geographical region. Results: The largest total number of deaths in minority ethnic groups were Indian (492 deaths) and Black Caribbean (460 deaths) groups. Adjusting for region we found a lower risk of death for White Irish (SMR 0.52; 95%CIs 0.45-0.60) and White British ethnic groups (0.88; 95%CIs 0.86-0.0.89), but increased risk of death for Black African (3.24; 95%CIs 2.90-3.62), Black Caribbean (2.21; 95%CIs 2.02-2.41), Pakistani (3.29; 95%CIs 2.96-3.64), Bangladeshi (2.41; 95%CIs 1.98-2.91) and Indian (1.70; 95%CIs 1.56-1.85) minority ethnic groups. Conclusion: Our analysis adds to the evidence that BAME people are at increased risk of death from COVID-19 even after adjusting for geographical region, but was limited by the lack of data on deaths outside of NHS settings and ethnicity denominator data being based on the 2011 census. Despite these limitations, we believe there is an urgent need to take action to reduce the risk of death for BAME groups and better understand why some ethnic groups experience greater risk. Actions that are likely to reduce these inequities include ensuring adequate income protection, reducing occupational risks, reducing barriers in accessing healthcare and providing culturally and linguistically appropriate public health communications.

2.
Wellcome Open Res ; 5: 98, 2020.
Article in English | MEDLINE | ID: covidwho-1304875

ABSTRACT

Background: Hand hygiene may mitigate the spread of COVID-19 in community settings; however, empirical evidence is limited. Given reports of similar transmission mechanisms for COVID-19 and seasonal coronaviruses, we investigated whether hand hygiene impacted the risk of acquiring seasonal coronavirus infections. Methods: Data were drawn from three successive winter cohorts (2006-2009) of the England-wide Flu Watch study.  Participants ( n=1633) provided baseline estimates of hand hygiene behaviour. Coronavirus infections were identified from nasal swabs using RT-PCR. Poisson mixed models estimated the effect of hand hygiene on personal risk of coronavirus illness, both unadjusted and adjusted for confounding by age and healthcare worker status. Results: Moderate-frequency handwashing (6-10 times per day) predicted a lower personal risk of coronavirus infection (adjusted incidence rate ratio (aIRR) =0.64, p=0.04). There was no evidence for a dose-response effect of handwashing, with results for higher levels of hand hygiene (>10 times per day) not significant (aIRR =0.83, p=0.42). Conclusions: This is the first empirical evidence that regular handwashing can reduce personal risk of acquiring seasonal coronavirus infection. These findings support clear public health messaging around the protective effects of hand washing in the context of the current COVID-19 pandemic.

3.
Wellcome Open Res ; 5: 52, 2020.
Article in English | MEDLINE | ID: covidwho-1068025

ABSTRACT

Background: There is currently a pandemic caused by the novel coronavirus SARS-CoV-2. The intensity and duration of this first wave in the UK may be dependent on whether SARS-CoV-2 transmits more effectively in the winter than the summer and the UK Government response is partially built upon the assumption that those infected will develop immunity to reinfection in the short term. In this paper we examine evidence for seasonality and immunity to laboratory-confirmed seasonal coronavirus (HCoV) from a prospective cohort study in England. Methods: In this analysis of the Flu Watch cohort, we examine seasonal trends for PCR-confirmed coronavirus infections (HCoV-NL63, HCoV-OC43, and HCoV-229E) in all participants during winter seasons (2006-2007, 2007-2008, 2008-2009) and during the first wave of the 2009 H1N1 influenza pandemic (May-Sep 2009). We also included data from the pandemic and 'post-pandemic' winter seasons (2009-2010 and 2010-2011) to identify individuals with two confirmed HCoV infections and examine evidence for immunity against homologous reinfection. Results: We tested 1,104 swabs taken during respiratory illness and detected HCoV in 199 during the first four seasons. The rate of confirmed HCoV infection across all seasons was 390 (95% CI 338-448) per 100,000 person-weeks; highest in the Nov-Mar 2008/9 season at 674 (95%CI 537-835). The highest rate was in February at 759 (95% CI 580-975). Data collected during May-Sep 2009 showed there was small amounts of ongoing transmission, with four cases detected during this period. Eight participants had two confirmed infections, of which none had the same strain twice. Conclusion: Our results provide evidence that HCoV infection in England is most intense in winter, but that there is a small amount of ongoing transmission during summer periods. We found some evidence of immunity against homologous reinfection.

4.
Wellcome Open Res ; 5: 54, 2020.
Article in English | MEDLINE | ID: covidwho-247457

ABSTRACT

Background: Social distancing measures may reduce the spread of emerging respiratory infections however, there is little empirical data on how exposure to crowded places affects risk of acute respiratory infection. Methods: We used a case-crossover design nested in a community cohort to compare self-reported measures of activities during the week before infection onset and baseline periods. The design eliminates the effect of non-time-varying confounders. Time-varying confounders were addressed by exclusion of illnesses around the Christmas period and seasonal adjustment.  Results: 626 participants had paired data from the week before 1005 illnesses and the week before baseline. Each additional day of undertaking the following activities in the prior week was associated with illness onset: Spending more than five minutes in a room with someone (other than a household member) who has a cold (Seasonally adjusted OR 1·15, p=0·003); use of underground trains (1·31, p=0·036); use of supermarkets (1·32, p<0·001); attending a theatre, cinema or concert (1·26, p=0·032); eating out at a café, restaurant or canteen (1·25, p=0·003); and attending parties (1·47, p<0·001). Undertaking the following activities at least once in the previous week was associated with illness onset: using a bus, (aOR 1.48, p=0.049), shopping at small shops (1.9, p<0.002) attending a place of worship (1.81, p=0.005).    Conclusions: Exposure to potentially crowded places, public transport and to individuals with a cold increases risk of acquiring circulating acute respiratory infections. This suggests social distancing measures can have an important impact on slowing transmission of emerging respiratory infections.

SELECTION OF CITATIONS
SEARCH DETAIL